<aside> 🍷
</aside>
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('Wine.csv')
X = dataset.iloc[:, 0:13].values
y = dataset.iloc[:, 13].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
from sklearn.preprocessing import StandardScaler
#StandardScaler를 사용하여 데이터의 평균을 0, 분산을 1로 맞추기
from sklearn.decomposition import PCA
#PCA를 사용하여 차원을 2개로 축소
explained_variance = pca.explained_variance_ratio_
from sklearn.linear_model import LogisticRegression
#로지스틱 회귀 모델으로 훈련 데이터에 맞춰 학습
y_pred = classifier.predict(X_test)